
Focus Individual: One-off attempts
to bridge gaps obstructing an
individual’s ability to complete
a specific development or test
task.

Project: Service Virtualization
(SV) emulates dependent
system components and allows
the project’s development or
testing tasks to ”shift left.”

Environment: SV provides
consistent access to dev/test
environments that involve
difficult-to-access, inconsistent,
or unreliable system
dependencies.

Scenario: Environments
are coordinated to rapidly
exercise different scenarios
(performance, security, error
conditions, etc.) in order
to achieve better testing
outcomes.

Enterprise: Provides optimized
and secured environment
access across and beyond the
enterprise—including portals
for business partners.

Characteristics Dev/test scenarios
need to execute across
complex, dependency-rich
environments, but access to
a staged test environment is
constrained.

Developers react by creating
stubs to pry the test or
scenario out of the constrained
environment. This is an ‚inside-
out’ approach.

QA/performance test engineers
react by waiting for access
to a complex staged test
environment (if available) or
using stubs to bypass critical
dependent systems.

A single group/project drives
the creation and management
of virtual assets that mimic
behavior of incomplete
or unavailable dependent
components.

Virtual assets are created for
specific use cases and are
augmented when needed for
alternative cases.

The extension of data sets or
performance profiles is reactive
based on specific testing needs.

A more holistic approach;
accommodates a broader
enterprise audience.

SV is leveraged to provide
continuous access to realistic
dev/test environments (rather
than simply alleviate project-
specific access pains).

Virtual assets are created,
accessed, and managed in the
context of environments.
Policies, procedures, and
standards exist around the
application of SV.

Consistent, continuous
environment access enables
more extensive and accurate
testing to occur with or
without access to a staged test
environment.

Environments are governed
by business rules that not only
dictate what components are
available, but also specify what
permutations are valid under
various contexts.

Since business rules automate
environment access and
control, users can rapidly ”self-
provision” test environments.
Configurations are accessed as
‘disposable software’ with zero
risk.

Lays the foundation for
goal-oriented business-driven
scenarios.

Provides the appropriate level
of environment access to each
constituency.

A Center of Excellence is
established to optimize and
manage policies, procedures,
and standards.

Optimized environment for
goal-oriented, business-driven
scenarios significantly reduces
application risk.

Parasoft Service Virtualization Maturity Model | 1

Process Fit Any pockets of maturity are
based on the experience and
initiative of individuals.

No centralization of assets;
every man for himself.

Enables earlier, easier testing,
but does not necessarily
diminish the need for staged
test environments.

A net new test environment is
available by the use of SV; this
is an initial step for facilitating
Agile/parallel development.

Creates more sophisticated and
flexible dev/test environments.

Promotes a level of
interconnectedness between
SV and virtual test lab
management systems.

Facilitates more mature
coordination between SV and
virtual test lab management
systems.

Seamless integration and
orchestration of SV with virtual
test lab management systems.

The unified solution establishes
a single entity that allows
for regression test suites to
automatically call complex
environments.

Environment
Management

Assets are typically created as
one-off solutions and stored on
a local machine, inaccessible to
anyone but the creator.

The ‘stub’ is created without
consideration of the
environment and serves only
the individual test.

Virtual assets might be
evolved if needed to bridge
project-specific gaps, but
no overarching change
management policies or
processes exist.

Change is managed from the
environment perspective.

Users are notified of new
virtual asset versions upon
accessing the environment;
change-impacts are
highlighted, and users have
the option of accessing the
required version.

Robust change management
and scenarios.

Automated business rules drive
the evolution of changing
environment components.

The SV environment is
governed by differentiated
states associated with how
various entities are accessing
SV assets and environments.

Maturity
Drivers

The application is not
adequately tested or integrated
due to limited access to
environment conditions.

The time and complexity of
managing stubs outweighs the
value they provide.

Constrained access to staged
test environments results in
unacceptable test coverage or
time-to-market delays.

Additional groups request
access to the virtual assets with
varied configuration options.

Increasingly comprehensive
scenarios vs. multiple
dependent systems need to be
tested.

Project experience exposes the
need for common, proactive
processes for reuse and
management.

Increased need to access
multiple on-demand,
”disposable” test environment
configurations tailored for
specific application or project
demands.

Controlled access to
sophisticated test
environments is needed
internally across the enterprise
and externally with strategic
business partners.

Parasoft Service Virtualization Maturity Model | 2

